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SUMMARY 

This  paper presents some r e s u l t s  o f  an e f f o r t  t o  demonstrate t h e  techno- 
l o g i c a l  readiness o f  a l o n g - l i f e  mu l t i p rope l l an t  r e s i s t o j e t  f o r  Space S t a t i o n  
a u x i l i a r y  propuls ion.  A l abo ra to ry  model r e s i s t o j e t  made f rom g r a i n - s t a b i l i z e d  
p la t i num served as a t e s t  bed t o  evaluate the  design c h a r a c t e r i s t i c s ,  f ab r i ca -  
t i o n  methods, and operat ing s t ra teg ies  f o r  an engineer ing model m u l t i p r o p e l l a n t  
r e s i s t o j e t  developed under con t rac t  by t he  Rocketdyne D i v i s i o n  o f  Rockwell 
I n t e r n a t i o n a l  and Technion Incorporated. The labora tory  model t h r u s t e r  was 
subjected t o  a 2000-hr, 2400-thermal-cycle endurance t e s t  us ing  carbon d i o x i d e  

w prope l l an t .  Maximum t h r u s t e r  temperatures were approximately 1400 O C .  The 
p o s t - t e s t  analyses o f  t he  labora tory  model t h r u s t e r  inc luded an i n v e s t i g a t i o n  
o f  component mic ros t ruc tures .  S i g n i f i c a n t  observat ions f rom t h e  l abo ra to ry  
model t h r u s t e r  a re  discussed as t h e y  r e l a t e  t o  the  design o f  t h e  engineer ing 
model t h r u s t e r .  
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INTRODUCTION 

This  paper presents the  r e s u l t s  o f  a 2000-hr, 2400-thermal-cycle endurance 
t e s t  o f  a labora tory  model r e s i s t o j e t  made from g r a i n - s t a b i l i z e d  p la t i num us ing  
carbon d iox lde  p rope l l an t .  H u l t i p r o p e l l a n t  r e s i s t o j e t s  have been basel ined as 
the low- th rus t  op t i on  f o r  t he  Space S ta t i on  propu ls ion  system. The r e s i s t o j e t  
can prov ide  l o w  l e v e l s  o f  t h r u s t  f o r  drag make-up w h i l e  d ispos ing  o f  a v a r i e t y  
o f  f l u i d s  expected t o  be present  i n  excess q u a n t i t i e s  on board Space Sta t lon .  
The use o f  such f l u i d s  as p rope l l an t  w i l l  r e s u l t  i n  s i g n i f i c a n t  reduct ions i n  
Space Transpor ta t ion  System (STS) c o s t s  which would be associated w i t h  launch- 
i n g  o f  t he  necessary p rope l l an ts  as we l l  as the  removal o f  waste f l u i d s  f rom 
Space Sta t ion .  
o f  a p ropu ls ion  system inco rpo ra t i ng  low- th rus t  r e s i s t o j e t s  ( r e f s .  1 and 2 ) .  

Recent s tud ies have explored these and o ther  p o t e n t i a l  b e n e f i t s  

The NASA Lewis Research Center i s  a c t i v e l y  invo lved i n  p ropu ls ion  compo- 
nent technology i n  support o f  the  Space S t a t i o n  Advanced Development Program 
( r e f s .  3 and 4).  A subs tan t i a l  p a r t  o f  these e f f o r t s  has focused on ma te r ia l  
eva lua t ion ,  f a b r l c a t i o n  methods, performance, plume evaluat ions,  and l i f e  
assessments o f  r e s i s t o j e t  technology f o r  Space S t a t i o n  a p p l i c a t i o n .  
nology goals emphasize t h r u s t e r  l i f e ,  r e l i a b i l i t y ,  and m u l t i p r o p e l l a n t  capa- 
b i l i t y  ra the r  than optimum performance. The design l i f e  goal  i s  a minimum of  
10 000 h r  f o r  t h rus te rs  operat ing on hydrogen, helium, methane, water (steam), 
n i t rogen,  a i r ,  argon, and carbon d iox ide a t  s p e c i f i c  impulse and t h r u s t  l e v e l s  
of 100 t o  500 sec and 130 t o  450 mN, respec t i ve l y .  

The tech- 

The main ob jec t ives  o f  t h i s  program were t o  evaluate t h r u s t e r  m a t e r i a l /  
p r o p e l l a n t  c o m p a t i b i l i t y  and f a b r i c a t i o n  methods as w e l l  as' p rov ide  p re l im ina ry  
l i f e t i m e  data f o r  a r e s i s t o j e t .  A simple labora tory  model r e s i s t o j e t  was 



f ab r i ca ted  f rom g ra in -s tab i l i zed  p la t inum and charac ter ized  on a v a r i e t y  o f  
p rope l l an ts  a t  heater temperatures up t o  1400 O C  ( r e f .  5 ) .  A d u p l i c a t e  o f  
t h i s  t h r u s t e r  was subjected t o  an endurance t e s t  opera t ing  i n  a thermal ly -  
c y c l i c  mode using carbon d iox ide  p rope l l an t .  
bed t o  p rov ide  i n s i g h t  i n t o  the  design o f  a l o n g - l i f e  engineer ing model 
r e s i s t o j e t  f o r  Space S t a t i o n  a p p l i c a t i o n  ( r e f .  6) .  The engineer ing model 
r e s i s t o j e t  i s  the second generat ion t h r u s t e r  developed under the  Space S t a t i o n  
Advanced Development Program. Valuable i n fo rma t ion  regard ing long-term endur- 
ance t e s t i n g  o f  space propu ls ion  devices i n  ground t e s t  f a c i l i t i e s  was a l so  

This  t h r u s t e r  served as a t e s t  

I ga l  ned . 

APPARATUS AND PROCEDURE 

Laboratory Model R e s i s t o j e t  Desc r ip t i on  

The mate r ia l  used f o r  cons t ruc t i on  o f  t he  labora tory  model r e s i s t o j e t  was 
g r a i n - s t a b i l i z e d  p la t inum because i t  e x h i b i t s  long-term, high-temperature com- 
p a t i b i l i t y  w i t h  a wide v a r i e t y  o f  oxyd iz ing  and reducing f l u i d s  ( r e f s .  7 and 
8) .  The p la t inum used was manufactured by Johnson-Matthey, and employed a 
small q u a n t i t y  ( less than 1 percent)  o f  z i rconium ox ide d ispersant  as a g r a i n  
s t a b i l i z e r .  The g r a i n  s t a b i l i z a t i o n  i s  des i red  t o  minimize g r a i n  growth which 
occurs when mater ia ls  a re  he ld  a t  h igh  temperatures f o r  extended per iods o f  
t ime. Excessive g r a i n  growth leads t o  d i s t o r t i o n  and weakening o f  components, 
which i s  o f  special  concern f o r  the  pressure vessel/heat exchanger o f  a 
r e s i s t o j e t .  

The laboratory  model r e s i s t o j e t ,  shown i n  f i g u r e  1, was a r a d i a t i v e l y -  
coupled dev ice employing a heat ing  element located i n  an evacuated c a v i t y  
w i t h i n  an annular heat exchanger body. The heat exchanger consis ted o f  two 
concentr ic  tubes sealed together  t o  permi t  contained gas f l o w  w i t h i n  the  annu- 
l a r  reg ion  between them. A s p i r a l  channel near the  rear  ( i n l e t  end) o f  the 
heat exchanger d i rec ted  the f l o w  o f  the c o l d  incoming gas c l r c u m f e r e n t i a l l y  t o  
reduce heat l oss  from the rear  o f  the  t h r u s t e r .  The f l o w  was then d i r e c t e d  
a x i a l l y  by 16 s m a l l  channels i n  the  forward ( h o t t e s t )  sec t i on  o f  the  heat 
exchanger, a f t e r  which the  gases were expanded through the  nozzle.  
element was made from a c o i l e d  tube comprised o f  22 tu rns  over a l eng th  of 
5.8 cm. The p la t inum t h r u s t e r  components were  j o i n e d  by e l e c t r o n  beam welds. 
Basic dimensions o f  the labora tory  model r e s i s t o j e t  a re  summarized i n  t a b l e  
I. To prevent heater c o i l  sag due t o  opera t ion  i n  standard g r a v i t a t i o n a l  
acce le ra t ion ,  a support s t ruc tu re ,  made from alumina, was incorporated i n  the  
heater element. This support s t r u c t u r e  ( f i g .  l ( c ) )  cons is ted o f  a 6.4 mm 
dlameter by 6.0 cm long rod located i n  the  center  o f  the  p la t inum c o i l  and one 
length  of 1.2 cm od by 1.0 cm I d  alumlna tub ing  surroundlng each end o f  the  
heater c o i l .  While i n t e r a c t i o n s  between alumina and g r a i n - s t a b i l i z e d  p la t inum 
a t  h igh  temperatures have been observed t o  cause degradat ion o f  t he  p la t inum 
s t r u c t u r e  ( r e f .  9 ) .  pre l im ina ry  t e s t s  suggested t h a t  app ly ing  a t h i n  coa t ing  
(nominal ly  2000 A)  o f  p la t inum t o  the  alumina surface re ta rds  t h i s  i n t e r a c t i o n .  
Fur ther  p ro tec t i on  o f  the  p la t inum components was prov ided by a l aye r  o f  
0.03 nun p la t inum f o i l  between the  outer  sur face of the  alumina tubes and the  
inner  sur face o f  the heat exchanger. To minimize r a d i a t i v e  heat losses from 
the outer  surface o f  the heat exchanger, the  t h r u s t e r  was wrapped w i th  rad ia -  
t i o n  sh ie ld ing  cons is t ing  o f  two layers  o f  0.03 mm p la t inum f o i l  fo l lowed by 

The heat ing  
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13 laye rs  o f  0.13 m s ta in less  s t e e l  f o i l .  
a rated by small diameter wires.  

The laye rs  o f  sh ie ld ing  were sep- 

Pre-Tes t  Analys is  

The purpose o f  t he  p re - tes t  analysis was t o  thoroughly  descr ibe the  condi-  
t i o n  o f  the  t e s t  t h r u s t e r  p r i o r  t o  i n i t i a t i o n  o f  t he  endurance t e s t .  
cha rac te r i za t i on  consis ted o f  an e l e c t r i c a l  c a l i b r a t i o n  o f  t he  heater element, 
a b r i e f  performance t e s t ,  and documentation o f  c r i t i c a l  t h r u s t e r  dimensions. 

between the  heater temperature and e l e c r i c a l  res is tance.  This  al lowed t h e  
res is tance t o  be used as an i n d i c a t i o n  o f  heater  i n t e g r i t y  du r ing  the  course 
o f  the  endurance t e s t .  During t h i s  c a l i b r a t i o n  the  heater  temperature was 
measured w i t h  a two-color o p t i c a l  pyrometer, and res is tances were measured f o r  
temperatures f rom 900 t o  1400 "C. 

This  

The e l e c t r i c a l  c a l i b r a t i o n  o f  the heater element gave the  r e l a t i o n s h i p  

The purpose o f  the  p re - tes t  performance t e s t  was n o t  t o  probe the  l i m i t s  
o f  the c a p a b i l i t i e s  o f  t he  t e s t  a r t i c l e ,  bu t  t o  p rov ide  a benchmark aga ins t  
which any changes i n  t h r u s t e r  behavior could be gauged and t o  a i d  i n  the  
s e l e c t i o n  o f  opera t ing  cond i t ions  dur ing the  endurance t e s t .  
performance t e s t  was conducted by measuring co ld - f low performance a t  two t h r u s t  
l e v e l s  and warm-flow performance a t  three t h r u s t  l e v e l s  w i t h  heater tempera- 
tu res  o f  approximately 1400 O C .  The apparatus used f o r  ob ta in ing  the  perform- 
ance data has been descr ibed I n  reference 5. 

The p r e - t e s t  

Endurance T e s t  

The endurance t e s t  was c a r r i e d  out i n  a t e s t  chamber measuring 0.6 m i n  
diameter by 1.0 m long, equipped w i t h  a r o t a r y  p i s t o n  vacuum pump. 
t h r u s t e r  was operated f o r  a t o t a l  o f  2400 1-hr thermal cyc les w i t h  a heater 
duty  cyc le  o f  83 percent and prope l lan t  mass f l o w  r a t e  he ld  approximately con- 
s tan t  a t  0.12 g/s. The p rope l l an t  used was h igh -pu r i t y  carbon d iox ide ,  and 
was chosen because i t  could be s tored i n  l i q u i d  form, was i n e r t  ( impor tan t  f o r  
f a c i l i t y  sa fe ty  considerat ions) ,  and was a l i k e l y  candidate f o r  use as a pro- 
p e l l a n t  on board Space Sta t ion .  Heater vo l tage and cur ren t ,  p r o p e l l a n t  mass 
f l o w  ra te ,  t h r u s t e r  i n l e t  pressure, and temperatures a t  t h ree  l oca t i ons  on the  
ou ter  l a y e r  of the  r a d i a t i o n  sh ie ld ing  were a l l  monltored cont inuously  du r ing  
the  t e s t .  F igure 2 shows a schematic representa t ion  o f  the  endurance t e s t  
apparatus. The heater was operated a t  29.0 A i n  a c u r r e n t - l i m i t e d  mode. This  
cu r ren t  l e v e l  was chosen t o  produce an e q u i l i b r i u m  heater temperature o f  
1400 "C a t  the  beginning o f  the t e s t .  The choice o f  heater temperature was 
based on the  expectat ion t h a t  the  f l i g h t  model r e s i s t o j e t  would a l s o  be oper- 
a ted a t  up t o  1400 O C ,  a temperature a t  which the  g lass f a b r i c a t i o n  i n d u s t r y  
has extens ive experience w i t h  operat ion o f  g r a i n - s t a b i l i z e d  p la t inum heaters.  
F igure 3 shows the  labora tory  model r e s i s t o j e t  mounted on the  vacuum f a c i l i t y  
f lange p r i o r  t o  i n i t i a t i o n  o f  t he  endurance t e s t .  
i n g  the  t e s t  remained approximately constant a t  40 Pa (0.3 t o r r ) .  

The 

Test f a c i l i t y  pressure dur-  
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Post-Test Analysis 

The endurance t e s t  was v o l u n t a r i l y  terminated a t  the  complet ion o f  2400 
thermal cyc les and 2000 h r  under power. The r e s i s t o j e t  was removed from the  
t e s t  chamber and subjected t o  a ser ies  of pos t - tes t  inspec t ions  intended t o  
thoroughly  document i t s  cond i t ion .  The c r i t i c a l  t h r u s t e r  dimensions were 
recorded, c o l d  and ho t  performance was documented, and the  e l e c t r i c a l  charac- 
t e r i s t i c s  o f  the heater element were evaluated. The pos t - tes t  analyses a l s o  
inc luded a complete sec t ion ing  o f  t h e  heater and heat exchanger t o  a l l o w  exam- 
i n a t i o n  o f  t h e  plat inum micros t ruc tures  a t  var lous places throughout the 
t h r u s t e r .  Th is  provided in fo rma t ion  regard ing the  e f f e c t s  o f  extended high- 
temperature operat ion and e lec t ron  beam weld j o i n i n g  on t h e  g r a i n - s t a b i l i z a t i o n  
p roper t i es  o f  the plat inum. 

RESULTS AND DISCUSSION 

Heater Charac ter iza t ion  

F igure  4 shows the r e s u l t s  o f  t he  e l e c t r i c a l  cha rac te r i za t i ons  performed 
before and a f t e r  the  endurance t e s t .  F igure 5 shows the  v a r i a t i o n  i n  heater  
vo l tage du r ing  the  course o f  the  t e s t .  Both o f  these f i gu res  i n d i c a t e  a drop 
i n  heater res is tance du r ing  the  t e s t .  Upon disassembly o f  the  t h r u s t e r  i t  was 
learned t h a t  5 o f  the  22 tu rns  o f  t he  heater c o i l  were shorted ( f i g .  6 (a ) ) .  
This sho r t i ng  occurred when c o i l s  moved a x i a l l y  along the  alumina support rod 
du r ing  the  c y c l i c  expansion and con t rac t i on  o f  the  heater.  Nonuni formi t ies i n  
t h i s  mot ion caused bunching a t  var ious l oca t i ons  along the  heater l eng th  and 
resu l ted  i n  the  observed shor t ing .  

The heater and heat exchanger design employed i n  the  engineer ing model 
r e s i s t o j e t  was chosen t o  e l im ina te  heater sho r t i ng  due t o  movement as observed 
i n  the  labora tory  model t h r u s t e r .  The engineer ing model design i s  based on a 
sheathed heater,  which cons is ts  o f  a rugged platinum/rhodium heater w i r e  sur-  
rounded by a layer o f  magnesium ox ide i n s u l a t i o n ,  a l l  o f  which i s  contained i n  
a g r a i n - s t a b i l i z e d  p la t inum sheath. This assembly i s  processed by swaging the  
outer  sheath, compacting the  magnesia between the  sheath and the  center  con- 
ductor ,  and insur ing  proper center ing  of the conductor w i t h i n  the  sheath. The 
heater i s  wound around a c e n t r a l  heat exchanger which incorporates a ser ies  o f  
semic i rcu la r  grooves i n  the forward sec t ion  designed t o  ho ld  the  heater i n  
p lace  w h i l e  p rov id ing  a l a rge  sur face area f o r  heat conduction. 
shows d e t a i l s  o f  the  sheathed heater used i n  the  engineer ing model r e s i s t o j e t .  

F igure  6(b)  

Performance Character izat ions 

The purposes o f  the  p re - tes t  performance cha rac te r i za t i on  were t o  p rov ide  
a bas is  f o r  se lec t ion  o f  the  t h r u s t e r  opera t ing  cond i t ions  du r ing  the  l i f e  
t e s t  as w e l l  as t o  a l l o w  f o r  exposure o f  any gross degradat ion o f  t h r u s t e r  
cond i t ion ,  such as gas leaks.  I t  was des i rab le  t h a t  the t e s t  t h r u s t e r  operate 
a t  a mass f l o w  r a t e  and maximum temperature o f  -0.12 g/s and 1400 O C ,  respec- 
t i v e l y ,  s ince these were the  nominal operat ing cond i t ions  a n t i c i p a t e d  f o r  t he  
engineer ing model r e s i s t o j e t .  The data gathered du r ing  the  p r e - t e s t  character-  
i z a t i o n  ind ica ted  t h a t  a cu r ren t  l e v e l  o f  29.0 A a t  the  s p e c i f i e d  mass f l o w  
r a t e  would produce the  des i red cond i t ions .  However, some d i f f i c u l t y  i n  keeping 
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t he  heater c o i l  centered i n  the  heat exchanger was experienced a t  t he  i n i t i a -  
t i o n  of t h e  endurance t e s t .  
t ub ing  were i n s t a l l e d  around the  heater c o i l  t o  keep i t  centered. The a d d i t i o n  
o f  these tubes caused a change i n  the  thermal environment around t h e  l a s t  t h ree  
tu rns  on each end o f  the  heater c o i l ,  r e s u l t i n g  i n  a reduc t ion  i n  temperature 
i n  these regions f o r  a g iven heater current.  Th is  caused the  average r e s i s t -  
ance o f  t he  heater t o  decrease f o r  a given opera t ing  cond i t ion .  The tempera- 
t u r e  i n  the  center  o f  t he  heater c o i l  i s  be l ieved t o  have remained a t  1400 O C  

f o r  a cu r ren t  o f  29.0 A a l though the  average temperature i nd i ca ted  by the  
res is tance measurement a t  the  i n i t i a t i o n  o f  the  t e s t  was about 1300 O C .  Com- 
par ison  of t he  beginning-of - test  performance data t o  the  end-of- test  perform- 
ance data ( t a b l e  11) ind i ca ted  a s i g n i f i c a n t  reduc t ion  i n  warm-gas performance 
dur ing  the  t e s t .  
was the  apparent cause o f  t h i s  reduced performance, s ince the  lower heater 
res is tance reduced the  maximum power which could be d iss ipa ted .  
i n  cold-gas performance was observed, so no gas leaks were ind ica ted .  

Therefore two sect ions o f  platinum-coated alumina 

The heater shor t ing  caused by a x i a l  movement o f  t he  c o i l s  

No degradat ion 

S t ruc tu ra l  I n t e g r i t y  

The e f f e c t s  o f  prolonged high-temperature, c y c l i c  operat ion i n  a ground 
t e s t  f a c i l i t y ,  and j o i n i n g  o f  t h r u s t e r  components us ing electron-beam welds on 
the  g r a i n  s t a b i l i z a t i o n  o f  p la t inum were o f  major i n t e r e s t ,  s ince the engineer- 
i n g  model t h r u s t e r  i s  f ab r i ca ted  f r o m t h i s  ma te r ia l .  While some data on the  
s t ress- rup ture  and creep proper t ies  o f  g r a i n - s t a b i l i z e d  p la t inum are  a v a i l a b l e  
i n  the  l i t e r a t u r e  ( r e f .  l o ) ,  no data f o r  t e s t  t imes i n  excess o f  1000 h r  were 
ava i l ab le .  

To evaluate the pos t - tes t  cond i t ion  o f  the  p la t i num micros t ruc ture ,  sev- 
e r a l  cross-sect ions of the  labora tory  model t h r u s t e r  were po l i shed and photo- 
graphed a t  magn i f i ca t ions  up t o  200X. 
t h r u s t e r  where photomicrographs were obtained. 

F igure 7 shows the  l oca t i ons  on the  

F igure  8 shows an a x i a l  sec t ion  o f  t he  nozzle t h r o a t .  The gra ins  i n  the  
immediate v i c i n i t y  o f  the  nozzle th roa t  a r e  s i g n i f i c a n t l y  smal ler  than the  
gra ins  i n  the  surrounding ma te r ia l .  This observat ion was no t  expected, s ince 
the  t h r o a t  was one o f  t he  h o t t e s t  regions i n  the  heat exchanger and should 
have e x h i b i t e d  increased g ra in  growth over cooler  areas. 
i n g  processes employed du r ing  f a b r i c a t l o n  o f  t h i s  p a r t  inc luded d r i l l i n g  o f  
t he  nozz le ho le  as w e l l  as a d d i t i o n a l  working t o  produce a smooth t r a n s i t i o n  
f rom t h e  t h r o a t  i n t o  the  nozzle cone. This l e v e l  o f  co ld  working could account 
f o r  t h e  r e l a t i v e l y  small gra ins i n  t h i s  region. Comparison o f  t he  pos t - tes t  
c o n d i t i o n  o f  t h i s  p a r t  t o  the  pre- tes t  c o n d i t i o n  o f  an ident ica l l y -p rocessed 
p a r t  would be des i rab le,  bu t  no add i t i ona l  unused pa r t s  were a v a i l a b l e  f o r  
sec t ion ing .  

However, the machin- 

The j o i n i n g  o f  g r a i n - s t a b i l i z e d  components us ing  welds has been observed 
t o  dest roy the  oxide d ispers ion,  causing enhanced g r a i n  growth w i t h i n  the  weld 
reg ion.  F igure 9 shows fou r  sect ions o f  electron-beam ( € 6 )  welds w i t h i n  the  
t h r u s t e r .  Figures 9(a) and (b)  show the nature o f  t he  g r a i n - s t a b i l i z e d  p l a t i -  
num tube- to - f lange j o i n t s  ( sec t i on  numbers 1 and 2 i n  f i g .  7 ) .  The tube, o r  
s h e l l ,  e x h i b i t s  a p l a t e - l i k e  g ra in  s t ruc tu re  w i t h  a l o w  aspect r a t i o  (w id th /  
l eng th ) ,  whereas the character o f  the weld g ra ins  more c l o s e l y  resembles t h a t  
o f  pure p la t inum as shown i n  reference 9. As expected, t h e ' g r a i n - s t a b i l i z e d  
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c h a r a c t e r i s t i c s  no longer e x i s t  w i t h i n  the  weld regions. Figures 9(c)  and (d) 
show t h e  g r a i n  s t ructures a t  two p o i n t s  w i t h i n  t h e  tube-to-nozzle E6 weld 
( s e c t i o n  numbers 3 and 4 i n  f i g .  7 ) .  The broken wh i te  l i n e s  i n d i c a t e  the 
i n t e r f a c e  between the  components p r i o r  t o  welding. 
i n  f i g u r e  9 (c )  d id  n o t  f u l l y  penetrate the  intended weld region, l eav ing  a 
vo id  through approximately one- th i rd  o f  t h e  pressure vessel w a l l .  
shows a s i m i l a r  r e s u l t ,  but  n o t  t o  t h e  same extent .  This c o n d i t i o n  was present 
through -50 percent o f  t he  tube-to-nozzle weld circumference, i n d i c a t i n g  t h e  
need f o r  f u r t h e r  exper imentat ion t o  determine t h e  optimum EB weld energy den- 
s i t y  f o r  such j o i n t s .  Table I11 shows t h e  energy d e n s i t i e s  ( t o t a l  weld energy/ 
weld length)  used t o  perform each o f  t he  welds shown i n  f i g u r e  9. An i n t e r e s t -  
i n g  f e a t u r e  o f  the welds i n  f i g u r e  9 (c )  and (d )  i s  t h a t  t h e  g ra ins  i n  the  weld 
regions are no larger ,  i n  general,  than those i n  the  regions surrounding t h e  
weld. I n  f a c t ,  some o f  the gra ins w i t h i n  the  welds appear t o  be smal ler  than 
those i n  the surrounding m a t e r i a l .  I t  i s  poss ib le  t h a t  these r e l a t i v e l y  small  
g ra ins  were caused by m ig ra t i on  o f  t he  s t a b i l i z a t i o n  dopant, z i r con ia ,  t o  t h e  
g r a i n  boundaries where i t  was s t i l l  ab le  t o  r e t a r d  growth o f  t he  g ra ins .  This 
s i t u a t i o n  may s t i l l  tend t o  weaken the weld reg ion and t h e  load-bearing j o i n t s  
i n  the  engineering model r e s i s t o j e t ,  therefore,  employ d i f f u s i o n  bonding over 
r e l a t i v e l y  l a r g e  surface areas w i t h  back-up El3 welds t o  ensure gas - t i gh t  
i n t e g r i t y .  

Note t h a t  t he  weld shown 

Figure 9(d) 

Figures 10(a) and (b )  show sect ions o f  the i nne r  heat exchanger s h e l l  i n  
the gas i n l e t  region and near the  nozzle, respec t i ve l y .  I t  i s  apparent t h a t  
the gra ins i n  the i n l e t  ( c o o l e r )  reg ion a re  smal ler  than those i n  the h igher-  
temperature nozzle region. Typica l  g r a i n  dimensions i n  f i g u r e  10(b) a re  about 
0.8 mm, o r  10 percent o f  t he  heat exchanger w a l l  th ickness. The temperature 
i n  t h i s  reg ion was est imated t o  have operated a t  600 O C  dur ing  the  m a j o r i t y  o f  
t he  endurance tes t ,  a l though t h i s  temperature was probably c lose r  t o  800 O C  
dur ing  the  f i r s t  300 thermal cyc les.  These estimates a re  based on ca l cu la ted  
values f o r  t h e  stagnat ion enthalp ies o f  t he  p r o p e l l a n t  and an assumed tempera- 
t u r e  d i f f e r e n c e  between the  gas and heat exchanger. The gas s tagnat ion 
enthalpy was obtained by f i r s t  c a l c u l a t i n g  the  t h r u s t  power (based on measured 
values o f  t h r u s t  and mass f l o w  r a t e ) ,  then d i v i d i n g  by an est imate o f  the 
square o f  t he  nozzle e f f i c i e n c y  and the  mass f l o w  r a t e :  

The nozzle e f f i c i e n c y  i s  def ined as t h e  r a t i o  o f  measured t o  i d e a l  s p e c i f i c  
impulse and ge i s  standard g r a v i t a t i o n a l  acce le ra t i on .  The r e s u l t i n g  
enthalpy value was then used w i t h  standard gas proper ty  tab les  ( r e f .  11) t o  
determine the  gas s tagnat ion temperature. The value o f  t h e  nozzle e f f i c i e n c y  
was assumed t o  be 0.92 based on the measured value o f  t h e  c o l d  gas e f f i c i e n c y  
o f  the t e s t  t h rus te r .  The r e s u l t i n g  ca l cu la ted  gas temperature i s  lower than 
the  exact value because the  nozzle e f f i c i e n c y  used was h igher  than would actu- 
a l l y  be experienced dur ing warm gas operat ion due t o  increased viscous losses 
a t  reduced Reynolds numbers. 

Figures l l ( a )  and (b )  show sect ions of one o f  t h e  heater tube c o i l s .  
During the t e s t  the heater tube operated a t  temperatures estimated t o  be 900 
t o  1400 "C, t h e  lower temperatures being associated w i t h  the  areas where c o i l s  

6 



had shorted together .  
t o  t ime and temperature e f f e c t s  on t h e  g r a i n  s t ruc tu re .  F igure  l l ( a )  shows a 
plane normal t o  the  tub ing  ax is ,  whi le  f i g u r e  l l ( b )  views a p lane p a r a l l e l  t o  
the  tub ing  ax i s .  Note t h a t  the grains s t i l l  e x h i b i t  an elongated shape w i t h  
t y p i c a l  g r a i n  lengths several  t imes the t y p i c a l  g r a i n  w id th .  F igure  l l ( a )  
shows t h a t  many gra ins span the  entire th ickness o f  t he  tub ing  w a l l  (about 
0.25 mm). 
2.5 mm t h i c k ,  g ra ins  o f  t h i s  s i z e  would be -10 percent  o f  t h i s  w a l l  th ickness, 
a c o n d i t i o n  which was present i n  the  pressure vessel o f  t h e  l abo ra to ry  model 
t h r u s t e r  and caused no apparent problems du r ing  2000 h r  o f  operat ion.  

The heater was expected' t o  show the  grea tes t  s e n s i t i v i t y  

Since the engineer ing model t h r u s t e r  pressure vessel w a l l s  a re  

Grain dimensions are known t o  approach a maximum value asympto t i ca l l y  
w i th  t ime a t  a g iven temperature ( r e f .  1 2 ) .  Reference 8 data shows t h a t  s l g -  
n i f i c a n t  growth can occur du r ing  annealing a t  1000 OC, al though the  ex ten t  o f  
f u r t h e r  g r a i n  growth cannot be ascertained due. to  l i m i t a t i o n s  on g r a i n  s i z e  
imposed by the  sample dimensions. Likewise, the  p o i n t  on the  growth curve 
represented by the  mic ros t ruc tures  shown i n  f i g u r e  11 cannot be i d e n t i f i e d  
( i .e . ,  these g r a i n  dimensions could have been l i m i t e d  by the  tub ing  dimension 
o r  by opera t ing  temperature). Thus, the gra ins  i n  the  pressure vessel w a l l s  
o f  t he  engineer ing model t h r u s t e r  could grow l a r g e r  than those observed i n  the  
l abo ra to ry  model heater s ince the  engineering model sec t i on  provides more room 
t o  grow. There are  then two questions which must be answered: (1 )  how la rge  
would t h e  gra ins  i n  a g r a i n - s t a b i l i z e d  p la t inum sample o f  l a r g e  cross-sect ion 
be a f t e r  several  thousand hours a t  temperatures o f  importance t o  the  design o f  
the  engineer ing model t h rus te r? ,  and ( 2 )  how la rge  can the gra ins  w i t h i n  the  
pressure vessel wa l l s  o f  t he  engineering model t h r u s t e r  be before the  s t ruc -  
t u r a l  i n t e g r i t y  I s  unacceptably compromised? An i n v e s t i g a t i o n  t o  determine 
the re la t i onsh ips  between t ime a t  temperature and g r a i n  s i z e  i n  g ra in -  
s t a b i l i z e d  p la t inum samples representat ive o f  the englneer ing model pressure 
vessel would be valuable.  

F igure  12 shows a sec t i on  o f  the heater  te rmina t ion  d i sc  w i th  the  p l a t l -  
num f o i l  shims (used t o  a f f e c t  a t i g h t  f i t  between the  heater t e rm ina t ion  and 
the  i n s i d e  o f  the  heat exchanger t o  enhance e l e c t r i c a l  c o n d u c t i v i t y ) .  Several 
of the  gra ins  have grown across the boundaries between the  0.02 mm shim layers,  
i n d i c a t i n g  the  ease w i t h  which plat inum d i f f u s i o n  bonds a t  temperatures near 
1000 "C. This  observat ion i s  o f  importance because d i f f u s i o n  bonds form the 
load-bear ing j o i n t s  i n  the  engineering model t h r u s t e r  pressure vessel .  

The environment i n  the  t e s t  chamber dur ing  the  endurance t e s t  caused no 
apparent contaminat ion o f  the g r a i n - s t a b i l i z e d  p la t inum t h r u s t e r  ma te r ia l .  
Th is  observat ion i nd i ca tes  t h a t  fu tu re  endurance t e s t s  on p la t inum t h r u s t e r s  
can be conducted i n  s i m i l a r  t e s t  environments Q i thout  f e a r  o f  f a c i l i t y  e f f e c t s  
i n t r o d u c i n g  e r r o r  i n t o  the  t e s t  resu l ts .  

Engineering Model Res is to je t  Design. 

The purpose o f  t h i s  endurance t e s t  was t o  serve as a t e s t  bed f o r  ma te r ia l  
c o m p a t i b i l i t y ,  hardware f a b r i c a t i o n  processes, opera t ing  cond i t ions ,  and s t r a -  
t eg ies  f o r  ground t e s t i n g  mu l t i p rope l l an t  r e s i s t o j e t s  w i t h  long l i f e  character-  
i s t i c s .  The in fo rmat ion  gained f r o m  t h i s  t e s t  has y ie lded va luable i n s i g h t  
i n t o  t h e  design o f  the  engineer ing mode l  r e s i s t o j e t  which w i l l  serve as a pre-  
p ro to type  Space S t a t i o n  t h r u s t e r .  The engineer ing model r e s i s t o j e t  
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incorporates s i g n i f i c a n t  design improvements over the  labora tory  model t h r u s t e r  
which w i l l  g i ve  i t  r e l i a b l e  l o n g - l i f e  c h a r a c t e r i s t i c s  ( r e f .  6 ) .  F igure  13 
shows a photograph o f  the  engineer ing model r e s i s t o j e t  as w e l l  as a cross- 
sec t iona l  drawing showing the  i n t e r n a l  layout .  Among the  most s i g n i f i c a n t  
d i f f e rences  between the  labora tory  model and engineer ing model r e s i s t o j e t s  are:  

(1 )  The co i led  tube heater i s  replaced by a c o i l e d  sheathed heater.  Th is  
e l im ina tes  the  p o t e n t i a l  f o r  sho r t i ng  o f  the heater  by surrounding the  cu r ren t -  
c a r r y i n g  res is tance element w i t h  a l a y e r  of compressed magnesia i n s u l a t i o n ,  
which i s  covered w i t h  a metal sheath. The sheathed heater i s  wound around a 
rugged c e n t r a l  heat exchanger and i s  secured i n  p o s i t i o n  by a ser ies  o f  semi- 
c i r c u l a r  grooves machined i n t o  the  outer  surface o f  t he  forward h a l f  o f  t he  
heat exchanger. This fea tu re  e l im ina tes  the  p o s s i b i l i t y  o f  movement o f  the  
heater,  which would r e s u l t  i n  changes i n  the  thermal c h a r a c t e r i s t i c s  o f  the  
th rus te r ,  and provides a l a r g e  contact  area between the  heater and heat 
exchanger. The temperature d i f f e r e n c e  between the  heater and heat exchanger 
i n  t h i s  design i s  i n h e r e n t l y  low, and p re l im ina ry  thermal t e s t s  on the  f i r s t  
engineer ing model i n d i c a t e  t h a t  i t s  temperature drop i s  l ess  than 200 OC f o r  a 
nominal heater temperature o f  1200 "C.  

(2 )  Large-surface-area d i f f u s i o n  bonds rep lace the  s t ress-bear ing E6 welds 
used i n  the  laboratory  model t h rus te r .  The d i f f u s i o n  bonds are  backed by EB 
welds located i n  r e l a t i v e l y  c o o l  regions o f  t he  engineer ing model t h r u s t e r  t o  
ensure gas - t i gh t  i n t e g r i t y .  This j o i n i n g  technique e l im ina tes  p o t e n t i a l  f a i l -  
ures due t o  adverse e f f e c t s  on the  g r a i n  s t a b i l i z a t i o n  o f  the p la t inum by the  
EB welding process. 

(3 )  A th ick-wal led pressure vessel/heat exchanger replaces the  th in -wa l led  
pressure vessel employed by the  labora tory  model t h rus te r .  This change 
improves the  stress-rupture c h a r a c t e r i s t i c s  o f  t he  engineer ing model r e s i s t o -  
j e t .  However, the quest ion o f  g r a i n  growth w i t h i n  the  wa l l s  o f  the  engineer- 
i n g  model heat exchanger pe rs i s t s ,  s ince the  t h r u s t e r  heat exchanger i s  planned 
t o  operate a t  a maximum temperature o f  1200 t o  1400 "C. 

CONCLUDING REMARKS 

Res is to je t  t h rus te rs  capable o f  operat ing f o r  extended per iods of t ime on 
a v a r i e t y  o f  p rope l lan t  f l u i d s  have been basel ined as the l ow- th rus t  op t i on  
f o r  Space Sta t ion  propuls ion.  The i r  bene f i t s  i nc lude  s i m p l i c i t y ,  low cost ,  
and the  a b i l i t y  t o  p rov ide  drag make-up wh i l e  d ispos ing  o f  f l u i d s  which would 
otherwise have t o  be removed from Space S t a t i o n  v i a  Shu t t l e .  These waste 
f l u i d s  can be vented e i t h e r  p ropu ls i ve l y  o r  nonpropuls ive ly ,  ensur ing t h a t  
f l u i d s  such as steam and carbon d iox ide  w i l l  n o t  condense du r ing  expansion t o  
vac uum . 

To prov ide  i n s i g h t  i n t o  the problems o f  l o n g - l i f e  opera t ion  o f  a m u l t i -  
p r o p e l l a n t  r e s i s t o j e t ,  a labora tory  model t h r u s t e r  f ab r i ca ted  f r o m  g ra in -  
s t a b i l i z e d  plat inum was subjected t o  a 2000-hr, 2400-thermal-cycle endurance 
t e s t  us ing carbon d iox ide  p rope l l an t .  

The prope l lan t  i n l e t  pressure ranged f r o m  0.10 t o  0.17 MPa du r ing  the 
t e s t ,  e x e r t i n g  a maximum hoop s t r e s s  o f  3.2 MPa on the  ou ter  w a l l  o f  the  heat 
exchanger, which i s  est imated t o  have operated a t  a maximum temperature o f  
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600 O C  dur ing  most o f  t he  t e s t .  No degradation i n  the  i n t e g r i t y  o f  the  heat 
exchanger/pressure vessel was observed. Evidence o f  mechanical d i s t o r t i o n  
occurred i n  t h e  heater element, which exh ib i ted  s i g n i f i c a n t  mot ion o f  t he  c o i l s  
along the  alumina heater support rod, causing sho r t i ng  and reduc t ion  i n  power 
l e v e l .  

@ 

The mic ros t ruc tures  o f  the  g ra in -s tab i l i zed  p la t inum pressure vessel com- 
ponents genera l l y  exh ib i t ed  an elongated, c y l i n d r i c a l  shape except a t  t he  e lec-  
t r o n  beam-welded j o i n t s  and i n  the  v i c i n i t y  o f  t he  nozz le th roa t .  
i n  these regions appeared more near l y  spher ica l .  
caused by the  me l t i ng  and r e c r y s t a l i z a t i o n  experienced du r ing  j o i n i n g ,  w h i l e  
the  g ra ins  near the  nozzle t h r o a t  a re  be l ieved t o  have been broken down du r ing  
f a b r i c a t i o n  o f  t h i s  p a r t .  The microst ructures o f  t he  heater c o i l  tub ing,  which 
operated a t  temperatures of 900 t o  1400 O C  dur ing  the  t e s t ,  showed g r a i n  dimen- 
s ions which were genera l l y  o f  the  same order as the  w a l l s  o f  t he  heater tub ing.  
I t  i s  poss ib le  t h a t  t he  g r a i n  s i z e  was l i m i t e d  by the  tub ing  dimension r a t h e r  
t h a t  the operat ing cond i t ions  o r  dura t ion  o f  the  endurance t e s t .  
dimensions i n  the  h o t t e s t  sec t ion  o f  t h e  l abo ra to ry  model heat exchanger were 
on the  order  o f  0.05 nun, or  -10 percent o f  the  pressure vessel w a l l  th ickness. 
These sect ions a re  est imated t o  have operated a t  600 "C f o r  most o f  the endur- 
ance t e s t  dura t ion .  Furthermore, the  gra ins I n  the  heat exchanger w a l l s  a re  
be l ieved t o  have reached t h e i r  maximum size,  s ince the  r a t e  o f  g r a i n  growth 
genera l l y  decreases w i t h  inc reas ing  time a t  temperature. 

The gra ins  
The weld g ra ins  shapes were 

The g r a i n  

2. The r e s u l t s  obtained from the  endurance t e s t  performed on the  l abo ra to ry  
model r e s i s t o j e t  y ie lded valuable i n s i g h t  i n t o  the  design o f  an engineer ing 
model r e s i s t o j e t .  The design o f  the  engineering model t h r u s t e r  incorporates 
s i g n i f i c a n t  improvements over the laboratory  model. S p e c i f i c a l l y ,  the problem 
o f  heater sho r t i ng  due t o  d i s t o r t i o n  has been e l im ina ted  by us ing  a rugged 
c o i l e d  sheathed heater wrapped around a th ick -wa l led  heat exchanger incorpor-  
a t i n g  a se r ies  o f  semic i rcu la r  r e t a i n i n g  grooves i n  the  forward sec t ion .  The 
use o f  s t ress-bear ing d i f f u s i o n  bonds backed by e l e c t r o n  beam welds i n  the  
engineer ing model r e s i s t o j e t  provides an exce l l en t  gas- t igh t  load  bear ing 
j o i n t .  The use o f  a t h i c k e r  w a l l  sect ion and a smal ler  i n s i d e  diameter i n  the 
engineer ing model pressure vessel than i n  the  labora tory  model resu l ted  i n  an 
87 percent  reduc t ion  i n  hoop st ress and an 80 percent reduc t ion  i n  the  r a t i o  
o f  g r a i n  dimension t o  w a l l  th ickness. I f  the engineer ing model i s  operated 
w i t h  a maximum pressure vessel temperature o f  600 O C ,  a s i g n i f i c a n t  margin o f  
sa fe ty  w i l l  e x i s t  w i t h  respect t o  s t r e s s  l e v e l  and g r a i n  growth. Thus a safe 
opera t ing  temperature l i m i t  has been establ ished f o r  the  engineer ing model 
t h r u s t e r .  

A t  t he  ou tse t  o f  t h i s  program the  maximum opera t ing  temperature f o r  the  
engineer ing model r e s i s t o j e t  was chosen t o  be 1400 "C. This l i m i t  was chosen 
because o f  extens ive glass f a b r i c a t i o n  i ndus t r y  experience i n  the  opera t ion  o f  
g r a i n - s t a b i l i z e d  p la t inum a t  1400 O C  f o r  per iods i n  excess o f  l o 4  h r .  
ever, m ic ros t ruc tures  o f  the  laboratory  model heater tub ing,  which operated a t  
900 t o  1400 O C ,  suggested t h a t  excessive g r a i n  growth might become a problem 
i f  the  engineer ing model t h r u s t e r  were operated a t  1400 O C .  An eva lua t ion  o f  
the  dependence of g r a i n  growth upon t i m e  and temperature would y i e l d  impor tant  
i n s i g h t  i n t o  the maximum safe operat ing temperature f o r  t he  engineer ing model 
r e s i s t o j e t .  

How- 
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TABLE I. - MULTIPROPELLANT RESISTOJET DESIGN 
CHARACTERISTICS 

~ 

Shellhozzle 
Material . . . . . . . . .  Grain-stabilized platinum 
Nozzle throat diameter, mm . . . . . . . . . .  0.84 
Nozzle area ratio . . . . . . . . . . . . . . . .  82 
Nozzle half angle, deg . . . . . . . . . . . . .  20 
Body length, cm . . . . . . . . . . . . . . . .  13.0 
Body diameter, cm . . . . . . . . . . . . . . .  1.92 
Material . . . . . . . . .  Grain-stabilized platinum 
Number of channels . . . . . . . . . . . . . . .  16 
Material . . . . . . . . .  Grain-stabilized platinum 
Tubing od, mm . . . . . . . . . . . . . . . . .  2.03 
Tubing id, mm . . . . . . . . . . . . . . . . .  1.52 
Coil length, cm . . . . . . . . . . . . . . . .  5.82 
Coil pitch . . . . . . . . . . . . . . . . . .  0.10 
Coil diameter, cm . . . . . . . . . . . . . . .  1.04 

temperature, OC . . . . . . . . . . . . . . .  1400 
Design life, hr . . . . . . . . . . . . . . .  

Heat exchanger 

Heater element 

Maximum operating 

10 000 

TABLE 11. - SUMMARY OF ENDURANCE TEST OPERATING 
CONDITIONS 

Mea s ured parameters 
Inlet pressure, MPa 
Mass flow rate, kg/sec 
Voltage, V 
Current, A 

Calculated parameters 
Thrust, MN 
Specific impulse, s 
Resistance, R 
Power, W 
Heater temperature, OC 
Heat exchanger temperadre 

(estimated), OC 

Beginning of 
test 

0.18 
1.23~104 
6.70 
29.0 

147 
122 

0.231 
194 
1400 

800 

End of 
test 

0.16 
1.24~104 
4.40 
29.0 

125 
103 

0.152 
128 
900 

600 
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TABLE 111. - ELECTRON BEAM WELD ENERGY DENSITIES 
FOR LABORATORY MODEL RESISTOJET 

~ 

J o i n t  
d e s c r l p t i o n  

Nozzle/pressure vessel  
Pressure vessel /  

f l ange  f r o n t  
Inner  heat  exchange tube/ 

f lange r e a r  
Flange f r o n t / f l a n g e  r e a r  
Heater tube/heater  term. 

d i  sk 

Energy d e n s i t y ,  F l g u r e  7 
kJ/cm r e f e r e n c e  number 

1 . 2  

.92  

.90 



r FLANGE FRONTIREAR EB WELD 

PROF 

PROPELLANT 
FLOW 

/ 

NOZZLE/PRESSURE 
,---PRESSURE VESSEL/FLANGE VESSEL EB WELD -, 

/// FRONT EB WELD \ 

> 

'- INNER HEAT EXCHANGER/FLANGE REAR EB WELD 

GRA I N-STAB1 L I ZED PLAT I NUM 

(A) HEAT EXCHANGER-NOZZLE CROSS-SECTION. 

'ELLANT INLET -, 

,-FLOW SPIRALING CHANNEL 

\ 
INNER TUBE (HEAT EXCHANGER) AND HEATER HEAT EXCHANGER 

CHANNELS ( 1 6 )  

POWER LEADS 4, '. 

(B) HEATER - HEAT EXCHANGER. 

,r HEATER TUBE r PLATINUH SHIMS 
I 

PLATINUM COATED i / 
ALUMINA ROD -. ,-HEATER TERM 

\ 

\HEATER TUBE/ 
'1. / HEATER TERM 

'1. I EB WELD ', / 
' 1  '\ 

'.L PLATINUM COATED ALUMINA 
SUPPORT TUBES 

(C) HEATER AND SUPPORT STRUCTURE CROSS-SECTION. 

FIGURE 1. - SCHEMATICS OF THE MULTIPROPELLANT RESISTOJET 
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RESISTOJET 

MASS FLOW METER 0 
@-@ PRESSURE REGULATOR 

ACCUMULATOR 

FIGURE 2. - SCHEMATIC DIAGRAM OF ENDURANCE TEST F A C I L I T Y .  

GAS 
SUPPLY 

TO 
PUMP 

FIGURE 3 .  - MULTIPROPELLANT RESISTOJET INSTALLED IN ENDURANCE TEST 
F A C I L I T Y  . 
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.30- 
PRE-TEST 

E 

5 .22- 

0 .26 - POST-TEST 

W V 

.10 I I I 
700 800 900 lo00 1100 1200 1300 1400 1500 

HEATER TEMPERATURE. OC 

FIGURE 4. - MULTIPROPELLANT RESISTOJET HEATER ELECTRICAL 
CHARACTERIZATION. NOTE: ERROR BARS ON POST-TEST POINTS 
INDICATE OBSERVED TEMPERATURE RANGE. 

1 

T 
0 400 800 1200 1600 2o00 2400 

NUMBER OF THERWL CYCLES 

0 500 lo00 1500 2000 
NUMBER OF HOURS UNDER POWER 

FIGURE 5. - HISTORY OF HEATER VOLTAGE DURING ENDURANCE 
TEST. 

(A) HEATER FOR LABORATORY MODEL THRUSTER (POST TEST). 

,-GRAIN-STABILIZED PT SHEATH , (3.96 MM O.D.) 

I 
PT/10% RH CENTER CONDUCTER 
(1.60 MM DIAM) 

(B) HEATER FOR ENGINEERING MODEL THRUSTER. 

FIGURE 6. - HEATERS FOR LABORATORY MODEL AND ENGINEERING MODEL 
THRUSTERS. 
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r W E L D  NO. 5 TSECTION NO. 8 (FIG. 10(B) )  
\ / 

,-WELD NO. 1 (FIG. 9 ( A ) )  

D NO. 3 (FIG. 9 ( C ) )  

LSECTION NO. 7 (FIG. 10(A) )  
(FIG. 9 ( D ) )  

FIGURE 7 . -  LOCATIONS OF EB WELDS I N  LABORATORY MODEL RESISTOJET REFERENCED I N  TEXT. TABLE 111. 

FIGURE 8. - GRAIN STRUCTURE AT NOZZLE THROAT. 
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T 
0.05 CM 

1 1 

(A) FLANGE/PRESSURE VESSEL (EB WELD NO. 1, FIG. 7). 

.... t 
(B) FLANGEIINNER HEAT EXCHANGER TUBE (EB WELD NO. 3. FIG.  7). 

FIGURE 9.  - EB WELD OF GRAIN-STABILIZED PT RESISTOJET COMPONENTS. 
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(C )  OUTER SHELLINOZZLE (EB WELD NO. 3. FIG. 7) .  

(D) OUTER SHELLINOZZLE (EB WELD NO. 4. FIG. 7) .  

FIGURE 9. - CONCLUDED. 
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( A )  INLET REGION (WELD NO. 7, F I G .  7) .  

(B) NOZZLE REGION (WELD NO. 8, FIG. 7) .  

FIGURE 10. - GRAIN STRUCTURE OF INNER HEAT EXCHANGER 
SHELL. 
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(A) NORMAL TO TUBE AXIS. 

L 
( B )  PARALLEL TO TUBE AXIS. 

FIGURE 11. - GRAIN STRUCTURE I N  HEATER TUBE. 
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FIGURE 12. - GRAIN STRUCTURE I N  HEAT TERMINATION DISK 
AT INTERFACE WITH INNER HEAT EXCHANGER WALL (PLATI- 
NUM F O I L  SHIMS SHOWN, SECTION NO. 9. FIG. 7 ) .  

ADVANCED DEVELOPMENT ENGINEERING 
MODEL RESISTOJET 

PLATINUM SHEATHED HEATER 
(PI CENTERCONDUCTOR MgO 
INSULATOR, Pt SHEATH), 

0040 DIA CONVTRUMPR 
THROAT-  NOZZLE^ 

0 HEATER 
.GAS FLOW - 

C-86-5364 

FIGURE 13. - ENGINEERING MODEL RESISTOJET. 
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